Remember the $y = x^2$ pattern ar

\boldsymbol{x}	y
0	0
+1	1
-1	1
+2	4
-2	4
+3	9
-3	9

the $y = $	$-x^2$	pattern
------------	--------	---------

x	y
0	0
+1	-1
-1	-1
+2	-4
-2	-4
+3	– 9
-3	- 9

<u>DIRECTIONS</u>: The following quadratic functions are already in vertex form. Find the vertex; axis of symmetry (will be in the form $x = \clubsuit$); state whether it opens UP or DOWN; and state whether it is wider, narrower, or the same shape as $y = x^2$ (Hint: all the functions on this sheet are the same shape as $y = x^2$). Graph these functions on graph paper.

1.
$$y + 7 = (x - 5)^2$$

2.
$$y - 1 = (x - 3)^2$$

3.
$$y-2=-(x+4)^2$$

4.
$$y + 3 = -(x + 6)^2$$

<u>DIRECTIONS</u>: Put the following quadratic functions in vertex form. Find the vertex; axis of symmetry (will be in the form x = 4); state whether it opens UP or DOWN; and state whether it is wider, narrower, or the same shape as $y = x^2$ (Hint: all the functions on this sheet are the same shape as $y = x^2$). Graph these functions on graph paper.

5.
$$y = x^2 - 2x - 1$$

6.
$$y = x^2 + 8x + 13$$

7.
$$y = -x^2 - 12x - 32$$

8.
$$y = -x^2 + 10x - 27$$